

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no 619249

Towards a new colour rendition metric

Peter Bracke
Groen Licht Vlaanderen
KU Leuven Light&lighting Laboratory

LED obstacles: early lessons learned

http://apps1.eere.energy.gov/buildings/publications/pdfs/ssl/ssl_lessons-learned_2014.pdf

- 12 lessons learned
- Lesson 4: The range of color quality available with LED-based products and the limitations of existing color metrics may confuse users

Agenda

- What is colour?
- What is colour rendition?
- The current metric + limitations
- The new metric

5 different light receptors

3 types of cones for colour

Rods for low light levels and movement

Photosensitive ganglion cell (ipRGC): day/night synchronisation,

pupil size

Images: Huffman, Psychology in Action Bryan Christie for Scientific American

Perception

Cone sensitivity

Colour representation: 3 coordinates

- RGB
- XYZ
- xyY
- Lu'v'
- La*b*
- HSL
- HSV
- HCL

By Jacob Rus - Own work, CC BY-SA 3.0 https://commons.wikimedia.org/w/index.php?curid=9445469

Spectra

Different spectra with same tri-stimulus values = Same colour

Object colour

Different illumination spectra give different reflected spectra. Although white can be the same for the different spectra, another object colour (e.g. magenta, orange-yellow) can be different.

	х	У	
Fluorescent lamp F4	0.540	0.295	
Neodymium incandescent lamp	0.617	0.287	
Halogen lamp	0.611	0.307	
RGB LED	0.682	0.318	
Blue LED + yellow phosphor	0.621	0.297	
LED cluster	0.585	0.281	

CIE colour rendering

"Effect of an illuminant on the colour appearance of objects by conscious or subconscious comparison with their colour appearance under a reference illuminant."

Index:

CIE colour rendering index

CIE CRI:

 R_a : measure of **average** colour fidelity/colour shift

 R_i : colour fidelity/colour shift for specific hue region

(disregarding limitations of samples and colour science)

But what about:

- Direction/type of colour shifts
- Information on human preference, naturalness, discrimination, ...
- Difference in colour for any specific object
- How one source will make things look compared to another

Limitations of considering only fidelity

CRI = 95, Original Image

Slide: Kevin Houser

Original Image courtesy of Randy Burkett Lighting Design

CRI = 80, Desaturated Image

Slide: Kevin Houser

Original Image courtesy of Randy Burkett Lighting Design

CRI = 80, Saturated Image (Red Enhanced)

Slide: Kevin Houser

Original Image courtesy of Randy Burkett Lighting Design

Issues of CIE colour rendering index

- Test samples
 - Non saturated
 - Non independent samples (limited amount of dyes)
- Von Kries transformation is outdated
- Colour space used is not a colour appearance space
- Infinite number of reference sources:
 - R_a for unequal CCTs cannot be compared!
- Two types of reference source with discontinuity at 5000 K
 - e.g. Planck distribution: at 4999 K: $R_a = 100$ | at 5001 K: $R_a = 89$
- Risk of poor correlation with visual colour quality assessment of narrowband sources, such as LEDs!

15

Motivation for a new rendition method

- The need for an improved measure of colour fidelity
 Use up-to-date colour science.
 Use improved sample set including saturated colours.
- The need to provide supplementary information about colour rendering ability of any given light source.
 - One index is not enough.
 - Add a colour gamut index.
 - Add a colour vector / distortion diagram.

 \Rightarrow IES TM-30-15

IES Method for colour rendition

IES Method for Evaluating Light Source

Contributors:

Academia (K. Houser, Y. Ohno, M. Royer, K. Smet, M. Wei, L. Whitehead), *Industry* (A. David, P. Fini), Lighting Design (R. Burkett)

Colour fidelity index R_f

Colour gamut index R_g + lots of graphical info

IES TM-30 indices

R_f fidelity index

- Average similarity in appearance of test and reference sources
- Analogous to CIE Ra, greater accuracy
- Scores 0 to 100
- Scale similar to CIE R_a, but high scores harder to achieve
- Equal weight to all directions of shift

R_g gamut index

- An R_g value greater than 100 indicates an average increase in saturation
- An R_g value less than 100 indicates an average decrease in saturation

IES TM-30

Colour science update

- = replace U*V*W* with state-of-the-art colour space CAM02-UCS
- = replace Von Kries transformation with CAT02
 - good perceptual uniformity
 - no CCT dependence
 - includes a good chromatic adaptation formula
 - includes a colour difference formula

Sample set improvement

Larger sample size from 8 (14) to 99 samples

Kevin A. G. Smet, Aurelien David & Lorne Whitehead (2016) Why Color Space Uniformity and Sample Set Spectral Uniformity Are Essential for Color Rendering Measures, LEUKOS, 12:1-2, 39-50, DOI: 10.1080/15502724.2015.1091356

Sample set improvement

Uniform 3D distribution in color space

Start from 105 000 reflectance samples

Natural objects, Paints, Plastics, Fabrics, Printed materials, Skin tones...

Discard some colours:

- Extremely saturated or dark
- No colour-error formula

Uniformly distributed selection **4880** colour points

Wavelength uniformity

Make sure that samples treat all wavelengths equally. Why? It is possible to generate many colours with only 3 "pigments":

But the corresponding samples are mostly sensitive to a few wavelengths for differences in colour rendition

Wavelength uniformity

The "wavelength sensitivity" for a sample set (r'2, r"2...)

SSL-erate*

99 test samples

4880 Reference set

99 Color Evaluation Samples

Groen

Vlaanderen

KU LEUVEN

No discontinuity at 5000 K

Gradual change by mixing blackbody and daylight reference illuminants

Theoretical Example

Original

CRI = 95

 $R_{\rm f} = 93$

 $R_{\rm g} = 100$

Desaturated

CRI = 80

 $R_{\rm f} = 78$

 $R_{\rm g} = 90$

Red-Enhanced

CRI = 80

 $R_{\rm f} = 78$

 $R_{\rm g} = 110$

Preference

high colour saturation is short-term preferred but long-term?

The 2 new indices are better colour rendition indications

More Liked

Less Liked

Groen Licht Vlaanderen

Preference for red saturation?

Red more saturated

More Liked

Less Liked

Groen

Vlaanderen

Preferred white

Is not on blackbody curve

Some additional resources

http://energy.gov/eere/ssl/tm-30-frequently-asked-questions

Watch the 8:45 minute movie!

Kevin Smet slides:

http://www.lichttechnologie.be/sites/default/files/downloads/KSMET_KU%20Leuven_Is%20the%20new%20CIE%20color%20rendering%20index%20finally%20in%20sight_40m.pdf

Kevin Houser slides:

http://www.personal.psu.edu/kwh101/TM30/PLDC2015 HouserRoyerDavid.pdf

Michael Royer slides:

http://energy.gov/sites/prod/files/2016/04/f30/royer-tm30-color-lightfair2016.pdf

