Human Centric Lighting needs new quantities for light intensity

Luc Schlangen – Lighting Europe / Philips Lighting Research

Light + Building, Frankfurt, March 15th 2016

Luc.Schlangen@Philips.com
Light for life: are we using the right light?

HUMAN CENTRIC LIGHTING:
designed to benefit human health & wellbeing

the right light, at the right time & place
Human Centric Lighting: non-visual responses to light

- Increasing light intensity (and blue content): increases alertness (all times of day)
- Decreasing light intensity (and blue content): supports relaxation (all times of day)
- Light at night must be handled with care: not to disrupt sleep and health

Opportunity: dynamic light solutions; mimic dawn and dusk, create a photoperiod of about 12 hours of sufficient brightness and 12 hours of dim, blue-deprived light, or darkness
Health and wellbeing (SSL-erate WP3) non-visual effects of light

- Identify non-visual effects for five application domains (education, healthcare, workplaces, homes, cities)
- Create dose-response curves (scientific studies): which non-visual effects occur in what light intensity ranges
- Give guidance on which light metrics to use in practice

Accelerate uptake Solid State Lighting technology
Quantify light via five photoreceptor inputs

Spectral sensitivity

- **S-Cone** (Blue)
- **M-Cone** (Green)
- **L-Cone** (Red)
- **Melanopsin** (480nm)
- **Rods** (nightvision)

Start including melanopsin activation in our lighting designs, codes & standards

photoreceptors interplay & total spectral sensitivity depends on (non-visual) effect, timing, intensity, adaptation state...

Rethinking light beyond vision and lux...

Visual system

spectrum * V(\lambda)

Lux

Non-visual system

spectrum * sensitivity: (eq.) opic Lux

new quantities for HCL
Measuring Light

- Tool 1: quantifies photoreceptor input in opic-lux (Lucas et al)

http://dx.doi.org/10.1016/j.tins.2013.10.004

Irradiance Toolbox

<table>
<thead>
<tr>
<th>Light source</th>
<th>Lambertian illuminant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Units</td>
<td>L</td>
</tr>
<tr>
<td>Amount</td>
<td>1.00</td>
</tr>
</tbody>
</table>

For blackbody or narrowband sources:

- Blackbody temperature: 4200 n/a
- Narrowband peak: 420 n/a nm
- Narrowband FWHM: 42 n/a nm

Photopic Illuminance

- Photopic Visibility: 555.0 n/a
- Photopic Sensitivity: λmax (n/a)
- Photopic Curve: α_opic lux

Unweighted summations from 380 to 780 nm inclusive

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Units</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irradiance</td>
<td>µW/cm²</td>
<td>0.55</td>
</tr>
<tr>
<td>Photon flux</td>
<td>L/cm²/s</td>
<td>1.62 x 10^12</td>
</tr>
<tr>
<td>Log photon flux</td>
<td>log₁₀ (L/cm²/s)</td>
<td>12.21</td>
</tr>
</tbody>
</table>

Prefix	α-opic lux
Cyanopic | 1.00
Melanopic | 1.00
Rhodopic | 1.00
Chloropic | 1.00
Erythropic | 1.00
CIE: make “opic-lux” approach SI compliant

<table>
<thead>
<tr>
<th>Radiometric</th>
<th>Photometric</th>
</tr>
</thead>
<tbody>
<tr>
<td>(equivalent) “melanopic Lux”</td>
<td>(equivalent) “melanopic Lux”</td>
</tr>
<tr>
<td>\times</td>
<td>\times</td>
</tr>
<tr>
<td>0.12</td>
<td>0.91</td>
</tr>
</tbody>
</table>

\Downarrow

melanopic irradiance

$in\ \mu W/cm^2$

\Downarrow

melanopic daylight-equivalent illuminance

$in\ Lux$

CIE is defining notations, definitions
making “opic lux” SI compliant via multiplication constants

http://div6.cie.co.at/?i_ca_id=611&pubid=490
Measuring Light

- Tool 2: extension also quantifies photoreceptor weighted irradiances, daylight equivalents and more light sources (Dieter Lang)
Melatonin suppression and light intensity

Melatonin @ night promotes good sleep and is suppressed by light.

Lux (photopic vision) does not predict melatonin suppression.

"Melanopic Lux" predicts melatonin suppression.

CIE: make "melanopic Lux" approach SI compliant.
Alertness and light intensity

Alertness correlates more strongly with log(“melanopic lux”)
Errors, depression scores and light intensity

• How does performance (errors) depend on light intensity?

• How do depression scores depend on light therapy?

 statistics & time frame (light intensity & therapy duration)

Work in progress........
Conclusions

- Melatonin suppression: lux (photopic vision) is not predicting the response

- α-opic irradiances are expected to be useful predictors for non-visual effects of light in HCL, especially for narrow spectral bands, mixed colors or special whites

- The lighting practice needs SI compliant metrics:
 - unit “α-opic lux” is not SI-compliant
 - α-opic irradiance & α-opic daylight-equivalent illuminance
 (multiplication factors, definitions & notations pending in CIE)

- Start using α-opic irradiances to design light conditions that achieve, or avoid, certain non-visual effects.

- Application example for dynamic light solutions:
 - offer high melanopic irradiances during daytime
 - and minimize melanopic irradiance during the night
This is the result of collaborative efforts by

C. Cajochen (University Basel)
M. Gimenez, K. Smolders, R. Lok, D. Beersma (University Groningen)
L. Halonen, P. Bhusal (University Aalto)
D. Lang (Osram)
A. Morotz (Lighting Europe)
P. Novotny, H. Plischke (Hochschule Munich)
L. Schlangen (Philips Lighting)
K. Wulff (University Oxford)

Thank you for your attention!

“The research leading to these results has received funding from the European Community’s 7th Framework Programme (FP7-ICT-2013-11) under the grant agreement nº 619249 acronym “SSL-erate”